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� Coupled bunch mode physical analogy.

� Wakefields and impedances.

� Longitudinal and Transverse bunched beam 
modes.

� Landau Damping

� General feedback system considerations.

� Conclusion

Outline
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Coupled Bunch Oscillations Physical 
Analogy

� Two coupled pendulums have two (eigen) modes 
of oscillation.

� The modes differ in frequency and phase.

� M degrees of freedom (bunches) have M 
oscillation modes.
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Bunch to Bunch Coupling in 
Accelerators

� Bunches deposit EM energy in rf cavities and 
other accelerator structures as they move.

� The bunches can then couple to others through 
the EM energy they leave behind.

� Process described in terms of the wakefunction 
and its Fourier cousin impedance.

� The wakefunction W(t) is the impulse response 
of an accelerator structure to the passage of an 
impulse beam.

� Both transverse and longitudinal wakes.
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Impedance

� Impedance is the fourier transform of the 
wakefunction.

� Convenient when describing beam instabilities in 
the frequency domain.

� Types

� Narrowband:  Cavity HOMs (long range, couples 
bunches to each other).

� Broadband: Discontinuities, Resistive wall (short 
range, bunch distribution details are important).
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Types of Instabilities

� Coupled Bunch Instabilities:  Driven by 
narrowband impedances.

� Long range wakefields.

� Cavity HOMs (High Q).

� Both longitudinal and transverse.

� Robinson Instability:  Primarily driven by the 
fundamental rf mode.

� Long range wakefields.

� Other HOMs can drive this.

� Longitudinal only.
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Types of Instabilities cont.

� Resistive Wall Instability:  Driven by vacuum 
chamber surface resistivity.

� Short perhaps to medium range wakefield.

� Surface resistivity frequency dependence ~

� Transverse only.

� Microwave, fast head-tail, transverse mode 
coupling instabilities:  Driven by broadband 
impedances.

� Short range wakefields.  

� Driven by discontinuities, steps

� The detailed bunch distribution is important.

� 1

�

2
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Longitudinal Coupled Bunch Modes

� Bunches M = 4 in this case, bunch to 
bunch phase shift δφ  for coupled 
bunch mode number  n =0, 1, 2 3.

� � � 2 � n

�

M

δ

φ

δ

φ
� Bunch phase space dipole and 

quadrupole modes.  Denoted by m = 
1, 2,... = number of periods of 
density modulation per synchrotron 
period.  

m � 1

m � 2
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Longitudinal CB Modes cont.

� Each mode has two lines within a band M times 
the revolution frequency.  

� Each mode has many lines in the spectrum.

f nm , p

� n

�

pM f rev

�

mf s

� The mode number m longitudinal bunch density 
modulation in one synchrotron period.

� The envelope of the lines is related to the mode 
number m and the bunch length.



Beam Stability at Light Sources / 2003 USPAS Santa Barbara   G. Decker, J. Carwardine, R. Hettel  N. Sereno, J. Sebek, June 15-20, 2003

Longitudinal Growth Rate

� Complex frequency shift:

� �

m , n

�

s
I

hVcos

�

s

�

Fm f p

� Z L f p

p
~

� Frequency shift contribution to the impedance is 
weighted by the bunch form factor.

� Proportional to the total current.

� Growth rate of the mode is given by the 
imaginary part of the frequency shift.
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Robinson Instability

� Interaction of the mode n = 0,  m = 1, with the 
fundamental accelerating mode resonance.

� Potential instability if the fundamental mode 
resonance is below the revolution harmonic.

� Can be understood simply:

� High energy particles in the bunch take longer to go 
around the ring (lower synchrotron frequency).

� They sample higher values of the accelerating mode 
impedance and gain more energy.

� Process repeats turn by turn.
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Robinson Instability

� What to do to prevent this?

� Adjust the cavity tuner to bring the cavity resonance 
above the revolution harmonic and sidebands.

� Robinson damping is thereby achieved.

� Damping process analysis is the same as instability.

� Cavity HOMs can sometimes induce the 
instability.

� Can also adjust the cavity tuner to change HOM 
resonances.

� Cavity temperature can also be used to tune 
HOM frequency.
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Transverse Coupled Bunch Modes

� Now the spectrum has synchrotron sidebands 
around each betatron sideband.

� Now the mode number m represents the number 
of betatron wavelengths per synchrotron period.

� Mode number m can be negative (180 degree 
phase shift)

� What about the envelope of the spectrum?
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Effect of Synchrotron Oscillations on 
the Transverse Modes

� Quadrupole focusing depends on energy.

1
f

� kl � B' l
B �

� Particles undergoing synchrotron oscillations 
have a betatron tune modulation at    .

� This adds a traveling wave component to the 
standing wave pattern given by m.

� Net effect for the transverse modes is that the 
envelope of the spectrum is shifted in frequency.

�

s
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Instability Summary

� Can limit the current in high current machines 
such as light sources, B-factories.

� Instability when the growth rate of a particular 
mode or modes exceeds the damping rate.

� Fortunately for light sources, synchrotron 
radiation is a very effective damping mechanism.

� But, what are the options for eliminating the 
problem.
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Options to Eliminate Multibunch 
Instabilities

� Synchrotron radiation damping.

� Landau damping (not very effective).

� Damp cavity HOMs as much as possible.

� Reduce vacuum chamber resistivity.

� Smooth vacuum chambers.

� Reduce the number of small gap chambers.

� Optimize RF cavity loops, temperature 
parameters.

� Multibunch feedback systems.
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Digression on Landau Damping

� Applies to a collection of harmonic oscillators 
which have different oscillation frequencies.

� When each oscillator is driven by the same 
sinusoidal force, not all the oscillators are 
resonantly driven.

� Most oscillators eventually become out of phase 
with the driving force.

� Initial coherent motion of all the oscillators is 
damped.
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Landau Damping cont.

� A multibunch instability can be damped by this 
mechanism. 

� The energy put into the beam goes into 
increasing the beam size rather than centroid 
amplitude.

� Not very effective damping mechanism for 
modern light sources with small emittance and 
bunch length (small tune spread).
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Feedback Systems

� Modern light sources require high beam currents.

� Growth rate of some trans/long modes exceeds 
radiation + landau damping.

� Feedback systems damp multibunch instabilities 
using pickups, processing electronics and 
kickers.

� But what is really going on?
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Feedback Systems cont.

� The multibunch instabilities act like harmonic 
oscillators.

� The feedback system adds a damping term to the 
equation of motion of the bunch.

u' '

�

Du'

� �

u
2u � 0

� This is the equation of a damped harmonic 
oscillator.
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Feedback Systems cont.

� Kicker is required supply a kick proportional to 
the angular position (x', y') for transverse 
feedback.

� Kicker supplies a kick in energy proportional to 
the energy offset relative to the synchronous 
energy for longitudinal feedback.
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Feedback Algorithm

� Feedback algorithm to correct the instabilities 
can be summarized for longitudinal and 
transverse:

� 1:  Measure the deviation of the bunch from the 
closed orbit.

� 2:  Wait ¼ of a betatron or synchrotron period.

� 3:  Apply a kick proportional to the measured 
displacement.
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Feedback Systems cont.

� Must make a proper measurement of beam 
parameters in order for the feedback system to 
apply the correct kick with the correct sign.

� x', y' measurement:  

� Minimum 1 pickup a multiple of 90 degrees in phase 
advance apart from the kicker.

� Better to use 2 bpms 90 degrees in phase apart to 
determine x', y' directly.

� Longitudinal:  Use a bpm/cavity sum signal to 
measure the arrival time of the beam.
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Feedback System Gain

� In practice both longitudinal and transverse 
feedback systems supply up to a maximum kick.

� The maximum occurs at some maximum value 
of the detected longitudinal or transverse 
displacement.

Dl �

�
u ' max

u ' max

� G
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Feedback System Gain cont.

� The damping time constant τ is related to the 
gain (in units of the revolution period):

1

�

� Dl
2T o

� G
2T o

� The equation represents the damping rate of the 
feedback system.

� This damping rate combined with 
radiation/landau damping must exceed the 
growth rate of the instability.
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Feedback System Bandwidth

� Kicker BW:  Extremes are a DC kick to all 
bunches up to ½ the bunching frequency.

� At a minimum system BW must be able to damp 
most unstable modes (largest growth rates).

� PEP II feedback system designed to damp all 
bunches (> 1000 bunches).
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Effect of the Closed Orbit

� Processing electronics is required to eliminate 
the closed orbit or stable beam motion.

� Required to avoid system saturation.

� Longitudinal feedback systems typically require 
70 dB suppression of the closed orbit signal.

� Transverse feedback requires around 50 dB.

� Bottom line is that after processing, the closed 
orbit signal sent to the kicker must end up much 
smaller than the betatron or synchrotron signals 
required for feedback.
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Feedback System Classification

� Can have bunch by bunch feedback.

� Signal processing extracts the signal from each 
bunch.

� System applies a correction kick to each bunch.

� Can have mode by mode feedback where the 
system detects and processes coupled bunch 
mode sidebands.

� In mode by mode feedback, must choose which 
modes to detect and damp.
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Summary

� Coupled bunch instabilities driven by the 
machine impedance from cavity HOMs 
discontinuities, vacuum chamber resistivity.

� Eventually, reducing the impedance is 
impractical (ie. HOM damping).

� At high beam currents both long/transverse 
instabilities may be present and require damping.

� Feedback system must be designed to damp all 
instabilities for a given maximum beam current 
and machine impedance.


